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Abstract— A weak version of Matrosov theorem, in the
spirit of LaSalle invariance principle, is established. The result
is clarified by means of two examples. The case of nested-
Matrosov theorem is also discussed.

I. INTRODUCTION

The property of stability of equilibria (and motions) of dy-

namical systems has been studied extensively during the last

century. Several fundamental results and characterizations

have been derived, see e.g. [1], [2], [3], [4] for a classical

account and [5], [6] for a modern discussion.

In the present paper we study a variation of Matrosov

theorem with the aim to establish stability properties, or

otherwise, of sets rather than of equilibria. In particular,

unlike the classical Matrosov theorem which allows to prove

asymptotic stability of an equilibrium provided a linear

combination of some functions is positive definite, we study

the case in which such a linear combination is only positive

semi-definite. In this respect, our result stays at Matrosov

theorem as LaSalle invariance principle stays at Lyapunov

theorem for asymptotic stability. Unlike LaSalle invariance

principle, however, the conclusions that can be drawn from

our weak version of Matrosov theorem are not necessarily

of the LaSalle type, since additional technical assumptions

are required to prove convergence results.

For convenience, we recall (the simplest version of)

Matrosov theorem, for time-invariant nonlinear systems, as

proved in [7], see also [8] for a proof based on the use of a

Lyapunov function and [9] for some generalizations.

Theorem 1 (Matrosov): Consider a nonlinear, time-

invariant, system described by the equation

ẋ = f(x), (1)

where x(t) ∈ R
n, and f : Rn → R

n is locally Lipschitz

continuous. Assume x = 0 is an equilibrium point, i.e.

f(0) = 0. Consider the following conditions.

(M1) There exists a differentiable, positive definite and

radially unbounded function V0 : Rn → R+ such

that

V̇0 ≤ 0. (2)
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(M2) There exists two differentiable functions V1 : Rn →
R and V2 : R

n → R, two continuous, positive

semi-definite functions N1 : Rn → R+ and N2 :
R

n → R+ and a continuous function ψ2 : R → R,

satisfying ψ2(0) = 0, such that

V̇1 ≤ −N1, (3)

V̇2 ≤ −N2 + ψ2(N1). (4)

(M3) There exists a positive definite function ω : Rn →
R such that

N1(x) +N2(x) ≥ ω(x). (5)

Then the following hold.

• (M1), (M2) and (M3) imply that the equilibrium x = 0
of system (1) is globally asymptotically stable.

• (M2) and (M3) imply that all bounded trajectories of

system (1) converge to the equilibrium x = 0.

Remark 1: The functions V1 and V2 are called auxiliary

functions. Often, Matrosov theorem is used in the simplified

version in which V1 = V0.

The problem that we address in this paper is to study

what happens replacing the condition (5) with the following

condition.

(M3)′ The function

N1(x) +N2(x) (6)

is positive semi-definite.

One might expect, borrowing from LaSalle invariance prin-

ciple, that the use of the new, weaker, condition on N1+N2

would allow to prove convergence of the trajectories of

the system to the largest invariant set contained in ΩN =
{x ∈ R

n | N1(x) + N2(x) = 0}. This is unfortunately not

true in general, but may be true under additional technical

assumptions (which clarify the role of stability in the proof

of such convergence result).

The rest of the paper is organized as follows. In Section II

we present the main results of the paper, which are then

proved using a technical result given in Section III. Section

IV contains two examples which highlight the significance of

the new stability theorem. Finally, Section V provides some

concluding remarks.

II. MAIN RESULTS

The first result of this section is a weak version of

Theorem 1, whereas the second result is a weak version of

the general result of [8], in which several auxiliary functions

are used.

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 320



Theorem 2: Consider the nonlinear, time-invariant, sys-

tem (1) and the following conditions.

(M4) The largest invariant set contained in the set

ΩN1,N2
= {x ∈ R

n | N1(x) = N2(x) = 0} (7)

is stable.

(M5) The set

ΩN2
= {n2 ∈ R+ | ∃x : N2(x) = n2, N1(x) = 0}

(8)

is a singleton, i.e. N2 takes a single value on the

set {x ∈ R
n|N1(x) = 0}.

Then the following hold.

1) (M1), (M2) and (M3)′ imply that all trajectories of the

system (1) are such that

lim inf
t→∞

[N1(x(t)) +N2(x(t))] = 0. (9)

2) (M1), (M2), (M3)′ and one of (M4) and (M5) imply

that all trajectories of the system (1) are such that

lim
t→∞

[N1(x(t)) +N2(x(t))] = 0. (10)

3) (M2) and (M3)′ imply that all bounded trajectories of

the system (1) satisfy condition (9).

4) (M2), (M3)′ and one of (M4) and (M5) imply that all

bounded trajectories of the system (1) satisfy condi-

tion (10).

Theorem 2 can be generalized to the case in which several

auxiliary functions are used, thus providing a weak version

of the Matrosov Theorem proved in [8], as detailed in

the following statement, in which only the case exploiting

condition (M4) is considered. The proof of the statement,

relying on Lemma 2, and on arguments similar to those in

the proof of Theorem 2 is omitted.

Theorem 3: Consider the nonlinear, time-invariant, system

(1) and the following conditions.

(M2)v There exists k ≥ 2 differentiable functions V1 :
R

n → R, · · · , Vk : Rn → R, k continuous, positive

semi-definite functions N1 : Rn → R+, · · · , Nk :
R

n → R+ and k − 1 continuous functions ψ2 :
R → R, · · · , ψk : R → R, satisfying ψi(0) = 0,

such that

V̇1 ≤ −N1,

V̇2 ≤ −N2 + ψ2(N1),
...

V̇k−1 ≤ −Nk−1 + ψk−1(N1, N2, · · · , Nk−2),

V̇k ≤ −Nk + ψk(N1, N2, · · · , Nk−1).
(11)

(M3)′v The function

N1(x) +N2(x) + · · ·+Nk(x) (12)

is positive semi-definite.

(M4)v The largest invariant set contained in the set

ΩN1,··· ,Nk
= {x ∈ R

n |N1(x) = · · · = Nk(x) = 0}
(13)

is stable.

Then the following hold.

1) (M1), (M2)v and (M3)′v imply that all trajectories of

the system (1) are such that

lim inf
t→∞

[N1(x(t) +N2(x(t)) + · · ·+Nk(x(t))] = 0.

(14)

2) (M1), (M2)v, (M3)′v and (M4)v imply that all trajec-

tories of the system (1) are such that

lim
t→∞

[N1(x(t) +N2(x(t)) + · · ·+Nk(x(t))] = 0.

(15)

3) (M2)v and (M3)′v imply that all bounded trajectories

of the system (1) satisfy condition (14).

4) (M2)v, (M3)′v and (M4)v imply that all bounded tra-

jectories of the system (1) satisfy condition (15).

III. TWO LEMMAS

The following Lemmas are intended to be used for study-

ing solutions of ordinary differential equations which are

known to exist on [0,+∞), and taking values in a compact

set. This explains why boundedness of various functions can

be assumed.

Lemma 1: Let i ∈ {1, 2}. Let ai : R+ → [1,+∞) be

bounded differentiable functions and bi : R+ → R+ be

bounded continuous functions.

Suppose there exist continuous positive definite functions

αi : R+ → R+ and a continuous function β2 : R+ → R+,

satisfying β2(0) = 0, such that

ȧ1 ≤ −α1(b1),
ȧ2 ≤ −α2(b2) + β2(b1).

(16)

Then

lim
t→+∞

∫ t

0

α1(b1(s))ds < +∞

and

lim inf
t→+∞

[b1(t) + b2(t)] = 0.

Remark 2: As will be illustrated by the examples in

Section IV, the hypotheses of Lemma 1, which imply

lim inf
t→+∞

[b1(t) + b2(t)] = 0,

do not guarantee, in general, the condition

lim
t→+∞

[b1(t) + b2(t)] = 0.

The extension of Lemma 1 to k differential inequalities is

given in the following statement.

Lemma 2: Let k ≥ 3, i ∈ {1, . . . , k} and j ∈ {2, . . . , k}.

Suppose there exist bounded differentiable functions ai :
R+ → [1,+∞), bounded continuous functions bi : R+ →
R+, continuous positive definite functions αi : R+ → R+
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and continuous functions βj : R
j−1

+ → R+, satisfying

βj(0) = 0, such that

ȧ1 ≤ −α1(b1),
ȧ2 ≤ −α2(b2) + β2(b1),

...

ȧk−1 ≤ −αk−1(bk−1) + βk−1(b1, b2, · · · , bk−2),
ȧk ≤ −αk(bk) + βk(b1, b2, · · · , bk−1).

Then

lim
t→+∞

∫ t

0

α1(b1(s))ds < +∞

and

lim inf
t→+∞

[b1(t) + b2(t) + · · ·+ bk(t)] = 0.

IV. EXAMPLES

In this section we present two examples which allow

to clarify the results of the paper and to highlight that

the condition (10) cannot be improved without additional

assumption.

Consider the 3-dimensional system

ẋ1 = (x21+ + x
p
3)x2,

ẋ2 = −(x21+ + x
p
3)x1,

ẋ3 = −xq3,
(17)

where x1+ = max{x1, 0}, p is a positive even integer and

q is a positive odd integer. The set of equilibrium points is

given by {(x1, x2, x3) : x1+ = x3 = 0}.

A. The case p = 2, q = 3

Let

V0(x1, x2, x3) = V1(x1, x2, x3) =
x21 + x22 + x23

2

and

V2(x1, x2, x3) = x2.

Then

V̇0 = V̇1 = −x43
V̇2 = −(x21+ + x23)x1

= −
(

x21+ + x23
)

x1+ +
√

−V̇1|x1−|,
(18)

where x1− = min{x1, 0}. As a result, conditions (M1), (M2)

and (M3)′ hold hence

lim
t→+∞

∫ t

0

x43(τ)dτ < +∞ , lim inf
t→+∞

(

x23(t) + x1+(t)
3
)

= 0.

(19)

We now study if it is possible to obtain stronger asymptotic

properties. For, observe that the first equality in (18) implies

that the origin is globally stable and that all the solutions con-

verge to the largest invariant set contained in the intersection

of a level set of V0 with the set {(x1, x2, x3) : x3 = 0}. In

such a set, we have

V̇2 = −x31+ ≤ 0,

and one could be tempted to claim that the solutions con-

verge to the largest invariant set contained also in the set

{(x1, x2, x3) : x3 = x1+ = 0}. This is not the case,

since, in general, a generic solution does not inherit the

properties of the solutions in the invariant set. To clarify this

statement re-write the system using polar coordinates (θ, ρ)
in the (x1, x2)-plane, i.e.

ρ̇ = 0,

θ̇ = −(ρ2 cos(θ)2+ + x23),
ẋ3 = −x33,

and note that ρ(t) = ρ(0),

θ(t) ≤ θ(0) −
∫ t

0

x23(s)ds

and

x3(t) = exp

(

−
∫ t

0

x23(s)ds

)

x3(0).

As a result

θ(t) ≤ [θ(0)− log(x3(0))] + log(x3(t))

and, since lim
t→∞

x3(t) = 0, θ(t) tends to −∞ modulo 2π, i.e.

θ(t) does not converge. In addition, since ρ(t) is constant,

the vector (x1(t), x2(t)) has a constant modulus and does

not stop turning around the origin, which implies that

lim
t→+∞

x3(t) = 0, lim inf
t→+∞

x1+(t) = 0,

but also that

lim sup
t→+∞

x1+(t) = |x1(0)|.

This last equation shows that the asymptotic property ex-

pressed by the second of equations (19) cannot be improved.

Figure 1 shows the phase portrait of the trajectories of the

system with initial condition x(0) =
[

1 0 1
]

′

, whereas

Figure 2 shows the time histories of the states x1, x2 and x3.

Note that the time axis is in log-scale. Figure 2 highlights

that all trajectories with initial condition off the (x1, x2)-
plane have an oscillatory behavior with a period that tends

to infinity. Note that trajectories with initial conditions such

that x3(0) = 0 converge to the set

{(x1, x2) | x21 + x22 = x1(0)
2 + x2(0)

2, x1 ≤ 0},

i.e. to a semi-circle centered at the origin, the size of which

depends upon the initial conditions. This set is not stable,

hence condition (M4) does not hold.

Remark 3: The ω-limit set of the trajectories of the system

starting off the (x1, x2)-plane is, as detailed in [10], a

chain recurrent set, which strictly contains the ω-limit set

of the trajectories of the system starting in the (x1, x2)-
plane, consistently with the results in [10] on asymptotically

autonomous semiflows.

Remark 4: As a consequence of the discussion in this

section, the (x1, x2)-subsystem of system (17), with p = 2
and q = 3, and x3 regarded as an input, does not possess

the converging-input converging-state property, see [11]. This
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Fig. 2. Time histories of the states of the system (17) with p = 2, q = 3 and x(0) = [1 0 1]′. Note that the states x1 and x2 undergo fast transients.
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Fig. 1. The trajectory of the system (17), with p = 2, q = 3 and x(0) =
[1 0 1]′.

does not contradict the result in [11], which highlights

(among other things, and similarly to what done in this paper)

the importance of asymptotic stability (of an equilibrium, or

of a set) to establish asymptotic properties of solutions.

Remark 5: The result of the above discussion has to be

interpreted on the basis of the results in [12]. Therein it is

shown that the ω-limit set of any solution of the sub-system

ẋ1 = x21+x2, ẋ2 = −x21+x1

is chain recurrent. This says approximately that any point

of this set can be made a point of an homoclinic orbit when

solutions are taken as limit, for ε → 0, of solutions, on

[0,+∞), of the perturbed system

ẋ1 = x21+x2 + u1(t), ẋ2 = −x21+x1 + u2(t),

where (u1, u2) has L∞ and L2-norm smaller than ε. For

system (17) the perturbations are given by

u1(t) = x3(t)
2x2(t), u2(t) = −x3(t)2x1(t).

These perturbations are such that

u1(t)
2 + u2(t)

2 = x3(t)
4(x1(0)

2 + x2(0)
2)

≤ x3(0)
4(x1(0)

2 + x2(0)
2),

and

∫ t

0

[u1(s)
2 + u2(s)

2]ds = (x1(0)
2 + x2(0)

2)

∫ t

0

x3(s)
4ds

≤ (x1(0)
2 + x2(0)

2)
x3(0)

2

2
,

hence, selecting x3(0) = o(
√
ε), the constraints on (u1, u2)

are satisfied. The consequence is that the ω-limit set of any

solution of the (x1, x2)-subsystem with x3 = 0, which is

composed of equilibrium points located on the portion of a

circle centered at the origin and having the x1-coordinate

non-positive, can be transformed into the full circle by such

small perturbations.

B. The cases p = 2, q = 1 and p = 4, q = 3

Consider system (17) with p = 2, q = 1 or p = 4, q = 3.

In this case we have

V̇2 = −(x21+ + x23)x1 = −
(

x21+ + x
p
3

)

x1+ − V̇1|x1−|,

yielding

V̇2 + kV̇1 ≤ −
(

x21+ + x
p
3

)

x1+, (20)

for all (x1, x2, x3) such that x1− > −k. Recall now that

all trajectories are bounded, i.e. remain in a compact set.

Hence it is possible to select k (as a function of the initial

conditions) such that the inequality (20) holds for all t ≥
0. By LaSalle invariance principle we conclude that all

solutions converge to the largest invariant set contained in a

level set of V1 and in the set {(x1, x2, x3) : x1+ = x3 = 0}.

This convergence result is illustrated in Figure 3, which

shows a trajectory with initial state x(0) = [1 0 1]′. Similarly

to the case in Section IV-A, the x1 and x2 states show an

oscillatory behavior but, unlike the case in Section IV-A,

x1(t) and x2(t) converge to a point such that x1+ = 0.
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Fig. 3. Time histories of the states of the system (17) with p = 2, q = 1 and x(0) = [1 0 1]′. Note that the states x1 and x2 undergo fast transients.

V. CONCLUSIONS

A LaSalle version of Matrosov theorem has been stated

and proved. It has been shown that stability plays a crucial

role in the study of the asymptotic behavior of trajectories

and that a naive application of ideas borrowed from LaSalle

invariance principle may yield wrong conclusions. The the-

ory has been illustrated by means of two simple examples.
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